

Warren Smith & Partners

KINGSGROVE RECYCLING FACILITY PROPOSED WASTE AND RESOURCE MANAGEMENT FACILITY

SITE SERVICING REPORT FOR DEVELOPMENT APPLICATION

DOCUMENT INFORMATION

Client: Kingsgrove Recycling Facility Pty Ltd
Project: Kingsgrove Recycling Facility Proposed Resource Management Facility
Document Ref: 4986000-WS+P-CS-RP-01 – Development Application Report [G]
Job No.: 4986000

CONSULTANT INFORMATION

Warren Smith & Partners Pty Limited
Consulting Civil, Hydraulic & Fire Protection Engineers
Level 9, 233 Castlereagh Street
Sydney NSW 2000

Ph: +61 2 9299 1312
Fax: +61 2 9290 1295
Email: wsp@warrensmith.com.au
Web: www.warrensmith.com.au

DOCUMENT CONTROL

A	1 st April 2015	Issue for Development Application
B	14 th April 2015	Re-Issue for Development Application
C	24 th August 2017	Re-Issue for Development Application
D	1 st September 2017	Re-Issue for Development Application
E	12 th August 2019	Re-Issue for Development Application
F	15 th August 2019	Re-Issue for Development Application
G	12 th December 2019	Re-Issue for Development Application
Rev #	Date	Description of Change

APPROVALS

A	Ivan Lim <i>Graduate Civil Engineer</i>	Michael Cahalane <i>Director of Civil & Water Engineering</i>
B	Ivan Lim <i>Graduate Civil Engineer</i>	Michael Cahalane <i>Director of Civil & Water Engineering</i>
C	Thomas Keddie <i>Intern Civil Engineer</i>	Michael Cahalane <i>Director of Civil & Water Engineering</i>
D	Thomas Keddie <i>Intern Civil Engineer</i>	Michael Cahalane <i>Director of Civil & Water Engineering</i>
E	Laura Shaughnessy <i>Project Manager – Civil & Water Engineering</i>	Michael Cahalane <i>Director of Civil & Water Engineering</i>
F	Laura Shaughnessy <i>Project Manager – Civil & Water Engineering</i>	Michael Cahalane <i>Director of Civil & Water Engineering</i>
G	Martyna Czarnota <i>Junior Designer – Civil & Water Engineering</i>	Michael Cahalane <i>Director of Civil & Water Engineering</i>
Rev #	Author	Reviewer

TABLE OF CONTENTS

1. INTRODUCTION.....	2
2. EXISTING STORMWATER DRAINAGE.....	3
3. AUTHORITY AND REGULATORY REQUIREMENTS.....	4
3.1 STORMWATER DRAINAGE REQUIREMENTS	4
3.2 WATER SENSITIVE URBAN DESIGN (WSUD) REQUIREMENTS	4
3.3 PAVEMENT DESIGN.....	4
4. PROPOSED STORMWATER SYSTEM.....	5
4.1 DRAINS INPUT PARAMETERS	6
4.2 SITE DISCHARGE RESULTS	7
5. WATER QUALITY MANAGEMENT	7
6. PAVEMENT DESIGN.....	7
7. SEDIMENT & EROSION CONTROL.....	8
7.1 SITE PROTECTION MEASURES	8
7.1.1 SITE ACCESS	8
7.1.2 SEDIMENT CONTROL.....	8
7.2 TEMPORARY STORMWATER SYSTEM (WHERE REQUIRED)	9
7.2.1 DUST CONTROL	9
7.2.2 MAINTENANCE.....	9

SCHEDULES

Schedule 1	Survey of Existing Development Site
Schedule 2	Gutter Sizing Calculations
Schedule 3	WS&P Design Drawings
Schedule 4	M5 East Project – Wolli Creek Flood Study
Schedule 5	Stormwater Drainage Flow Calculations

1. INTRODUCTION

Warren Smith and Partners (WS+P) has been engaged by Kingsgrove Recycling Facility Pty Ltd to prepare and submit a Development Application Report for the proposed development relating to stormwater drainage. Please refer to Figure 1 below for an aerial view of the property boundary and proposed development area.



Figure 1: Aerial View of Property Boundary and Proposed Development Area (Source: Google Map)

The existing site is a vacant flat block of land located at 2D, The Crescent, Kingsgrove and is zoned as light industrial. The site is surrounded by industrial properties and a stormwater channel at the rear of the property. The proposed development involves the construction of a shelter shed covering approximately 1,000 square metres of the site which is to be used as a Waste and Resource Management Facility.

2. EXISTING STORMWATER DRAINAGE

The existing property includes the proposed development area and a western lot which is not the part of the proposed development area. An existing site survey plan has revealed the following:

Proposed Development Area

- The proposed development area grades in one direction towards a low point located in north-east corner of the site,
- Currently, there is no existing council drainage infrastructure fronting the property and no existing stormwater drainage within the proposed development area. It is proposed that stormwater infrastructure will be constructed within the development site to serve the proposed Waste and Resource Management Facility.

Western Lot

- The western lot which is adjacent to the proposed development area, grades in an easterly direction towards three (3) existing grated pits. The most northerly grated pit is a local sag pit located immediately west of a row of existing trees;
- The three (3) existing grated pits located within the western lot are connected by one (1) existing 300mm diameter stormwater pipe which reticulates north and discharges into the stormwater channel at the rear of the site.
- The western lot area is not part of development area and shall remain as per its pre-existing conditions.

Please refer to *Schedule 1 – Survey of Existing Development Site* for an illustration of the site grading.

3. AUTHORITY AND REGULATORY REQUIREMENTS

With reference to the Hurstville City Council Development Control Plan (DCP) No.1 Section 5, Appendix 2 and DCP No.2 – Car Parking, the council requirements are as follows:

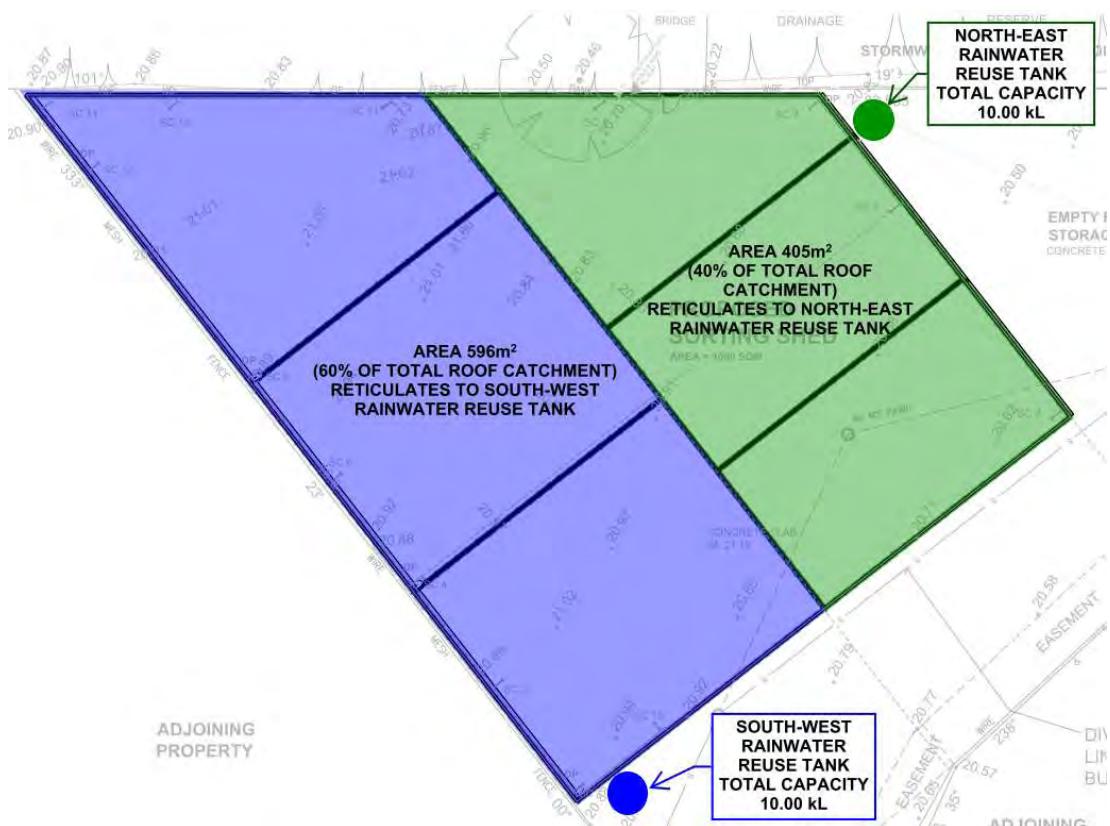
3.1 STORMWATER DRAINAGE REQUIREMENTS

- All drainage is to be designed for a 1 in 20 year storm frequency except if the site is located in the Wolli Creek catchment, and for Hurstville area, this gives 185mm/hour intensity for a six (6) minute storm.
- Trunk drainage systems should provide for the 20 year ARI event with overland flow paths designed for the 100 year storm ARI event.
- All stormwater pits are to be grated pits.
- All outlet pipes from a grated pit are to have a minimum 150mm diameter graded at a minimum of 1%.
- All pipes are to be minimum sewer grade PVC.
- The last grated pit before entering a Council pipeline or kerb and gutter must have 150mm sump and galvanised mesh permanently fixed over the outlet pipes.
- Cast in situ concrete, brick or precast concrete grated pits must be used in trafficable areas.
- Grated drains to be installed across long driveways at the front boundary to prevent stormwater flowing across Council's footpath.

3.2 WATER SENSITIVE URBAN DESIGN (WSUD) REQUIREMENTS

- The quality of stormwater leaving development sites is consistent with water quality standards set by the Environment Protection Authority and ANZECC.

3.3 PAVEMENT DESIGN


- Straight ramps that are less than 20 metres long can have a maximum 1 in 5 (20%) grade.
- Changes of grade in excess of 1 in 8 (12.5%) will require the introduction of one or more transitions between the main grade lines. Such a transition is to be half the sum of the two adjacent grades.

4. PROPOSED STORMWATER SYSTEM

The total site area is 0.4640 ha, however the proposed development area has a total catchment area of approximately 0.2168 ha with a roof catchment area of approximately 0.1026 ha. The proposed stormwater system is to be installed along the eastern side of the development area, reticulating to a 70.40m³ onsite detention tank before discharging to the stormwater channel at the rear of the development site in the north-east corner.

The pit and pipe systems have been sized in accordance with the Hurstville City Council DCP and have a minimum capacity equivalent to the 20 year ARI storm event.

The stormwater runoff from the roof of the proposed shed will be captured by a 300mm wide box gutter along the south-west side and by a 200mm diameter half-pipe eaves gutter on the north-east side. All stormwater runoff will be connected into two (2) 10,000L rainwater re-use tanks which will each incorporate a first flush device. The rainwater collected by the tanks will be recycled and used for dust suppression purposes in the factory and yard. The rainwater re-use tanks will be located at the south-west corner and the north-east corner of the proposed shed. Please refer to Figure 2 below for the locations of the rainwater re-use tanks. A 225mm diameter overflow pipe will connect each rainwater re-use tank to the proposed stormwater system and discharge to the stormwater channel. Please refer to *Schedule 3 WS&P Design Drawings*.

Figure 2: Rainwater Reuse Tank Location Plan

The 300mm wide box gutter has been sized in accordance with AS3500.3, Plumbing and Drainage – Stormwater Drainage, and has a minimum capacity equivalent to the 100 year ARI storm event. The 200mm half-pipe eaves gutter has been sized in accordance with AS3500.3, Plumbing and Drainage – Stormwater Drainage, and has a minimum capacity equivalent to the 20 year ARI storm event. Please refer to *Schedule 2 Gutter Sizing Calculations for details*.

It is noted that the 100 year ARI flood level of 20.78m AHD has been interpolated from the M5 East Project Wolli Creek Flood Study conducted in 1998 by Willing & Partners. All floor levels and electrical equipment are to be provided at a minimum RL of 21.30m AHD which provides appropriate freeboard.

Please refer to *Schedule 3 – WS&P Design Drawings* for stormwater plan and details and *Schedule 4 – M5 East project Wolli Creek Flood Study*.

4.1 DRAINS INPUT PARAMETERS

The site discharge flows for different storm events have been calculated using a DRAINS model, which is a stormwater drainage system design and analysis program. DRAINS performs hydraulic grade line analysis and generates flows that occur in a drainage system for a particular AEP storm event.

The catchment characteristic factor values for the development site used in the DRAINS model are listed below:-

• Soil Type – Normal	3.0
• Paved (Impervious) Area Depression Storage	1mm
• Supplementary Area Depression Storage	1mm
• Grassed (Pervious) Area Depression Storage	5mm
• Antecedent Moisture Condition	3.0
• Minimum Pit Blockage (Sag Pits)	0.5
• Minimum Pit Blockage (On-Grade Pits)	0.3
• Minimum Pit Freeboard	150mm

The rainfall data has been taken from the Bureau of Meteorology Rainfall IDF Data System using local coordinates.

4.2 SITE DISCHARGE RESULTS

In order to comply with the Council stormwater drainage requirements, the existing site and proposed development were both modelled in DRAINS.

Refer to Table 4.1 for the pre-development and post development discharge flows.

Table 4.1: Site Discharge Results

Storm Event (% AEP)	Pre-Development Area Discharge (L/s)	Post Development Area Discharge (L/s)
1 Year ARI Storm Event	35	8
5 Year ARI Storm Event	76	12
10 Year ARI Storm Event	90	13
20 Year ARI Storm Event	108	15
50 Year ARI Storm Event	121	19
100 Year ARI Storm Event	137	21

5. WATER QUALITY MANAGEMENT

It is proposed that all grated inlet pits within the property be fitted with Enviropod filter baskets. It is also proposed that the OSD tank be fitted with four (4) Psorb 460mm stormfilter cartridges to provide further treatment to satisfy the WSUD Council requirements. The stormwater drainage system has been designed to direct all stormwater runoff from pavements and pervious areas within the development site to the treatment chamber of the OSD tank before discharging into the stormwater channel at the rear of the development. Please refer to Schedule 2 – WS&P Design Drawings.

6. PAVEMENT DESIGN

The pavement levels within the development site have been graded at a minimum of 1% towards the north-east corner of the site. This grading is to allow a safe overland flow path for the stormwater runoff, in the event of the pit and pipe system reaching full capacity during a high rainfall event, which will allow it to discharge safely into the stormwater channel.

7. SEDIMENT & EROSION CONTROL

The Contractor for the works is required to provide Erosion and Sedimentation Control in accordance with the general requirements outlined below.

7.1 SITE PROTECTION MEASURES

It is proposed to provide the following in order to inhibit the movement of sediment off the site during the demolition and construction phases.

7.1.1 SITE ACCESS

Construction vehicles leaving the site shall be required to pass over a Temporary Construction Vehicle Entry consisting of a 1.5m long by 3m wide 'cattle rack'.

7.1.2 SEDIMENT CONTROL

All exposed earth areas where it may be possible for runoff to transport silt down slope shall be protected with a sediment and erosion control silt fence generally installed along the boundaries of the site.

The fence will be constructed in accordance with details provided by the Department of Conservation and Land Management incorporating geotextile fabric which will not allow suspended particles greater than 50mg/L non-filterable solids to pass through, and as such comply with the appropriate provisions of the Clean Waters Act 1970.

The construction of the silt fence will include the following:-

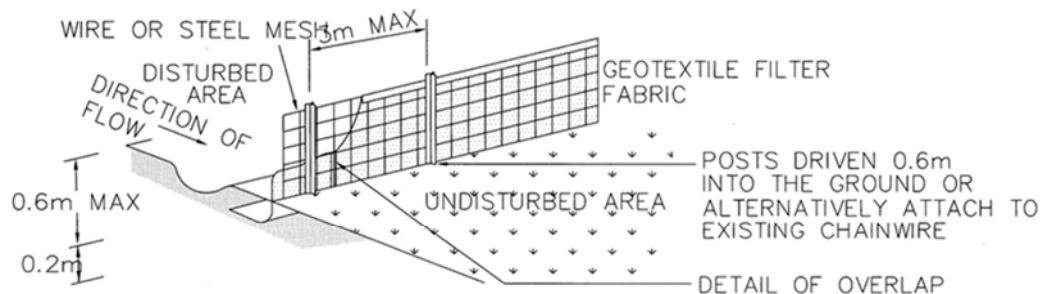
- Geotextile fabric buried to a maximum of 100mm below the surface;
- Overlapping any joins in the fabric;
- Turning up on the ends for a length of 1 metre in order to prevent volumes of suspended solids escaping in a storm event;
- Any Council owned road kerb entry and or gully pits will be protected by Atlantis Filter Bales and EcoSock. Additional protection will be provided by inserting Water Clean Filter Cartridges into the gully opening, and;
- Internal site drainage pits shall be protected by Sediment Traps consisting of hay bales.

7.2 TEMPORARY STORMWATER SYSTEM (WHERE REQUIRED)

Site runoff within the zones of the excavation will be drained into a central holding well within the excavation. Runoff will be allowed to settle out suspended particles and debris and an acceptable water quality of 50mg per litre of Non Filterable Residues (NFR) is required to be achieved prior to discharge.

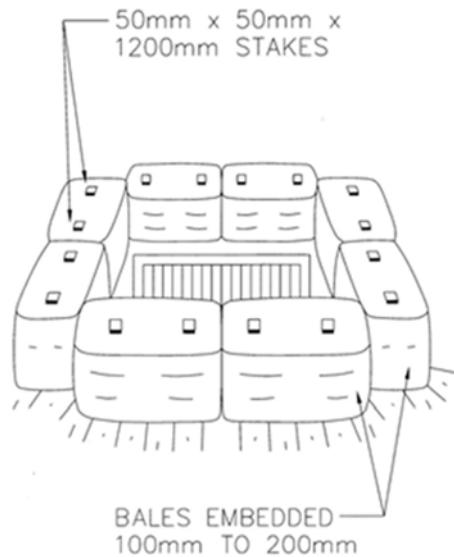
7.2.1 DUST CONTROL

The following dust control procedures will be adhered to:

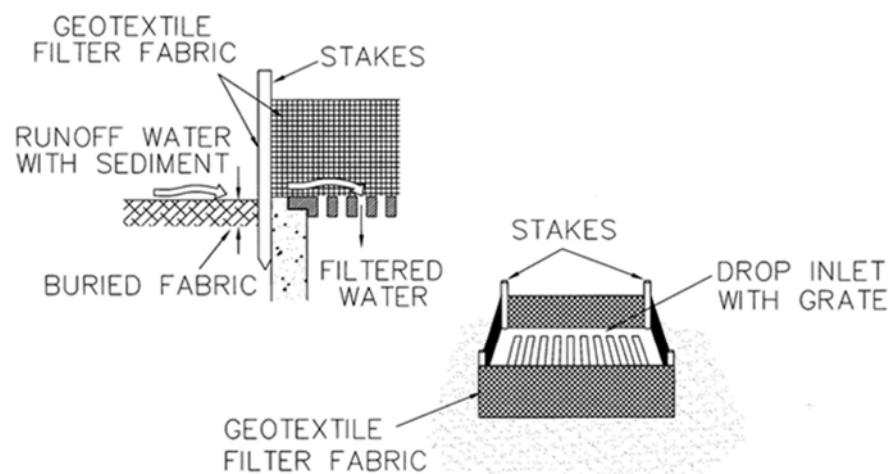

- Loose loads entering or leaving the site will be securely covered by a tarpaulin or like material in accordance with RTA and Council Guidelines.
- Soil transport vehicles will use the single main access to the site.
- There will be no burning of any materials on site.
- Water sprays will be used across the site to suppress dust. The water will be applied either by water sprinklers or water carts across ground surfaces whenever the surface has dried out and has the potential to generate visible levels of dust either by the operation of equipment over the surface or by wind. The watercraft will be equipped with a pump and sprays.
- Spraying water at the rate of not less than three (3) L/s and not less than 700kPa pressure. The area covered will be small enough that surfaces are maintained in a damp condition and large enough that runoff is not generated. The water spray equipment will be kept on site during the construction of the works.
- During excavation all trucks/machinery leaving the site will have their wheels washed and/or agitated prior to travelling on Council Roads.
- Fences will have shade cloth or similar fabric fixed to the inside of the fence.

7.2.2 MAINTENANCE

- It will be the responsibility of the site foreman for the building contractor to ensure sediment and erosion control devices on site are maintained. The devices shall be checked daily and the appropriate maintenance undertaken as necessary.
- Prior to the closing of the site each day, the road shall be swept and materials deposited back onto the site. Under no circumstances shall the laneway be washed down in order to clean or wash any materials deposited on the street.
- Gutters and roadways will be kept clean regularly to maintain them free of sediment.
- Appropriate covering techniques, such as the use of plastic sheeting will be used to cover excavation faces, stockpiles and any unsealed surfaces;


- If dust is being generated from a given surface, and water sprays fail;
- If fugitive emissions have the potential to cause the ambient air quality to foul the ambient air quality;
- The area of soils exposed at any one time will be minimised wherever possible by excavating in a localised progressive manner over the site; and,
- Materials processing equipment suitable comply with regulatory requirements. The protection will include the covering of feed openings with rubber curtains or socks.

It is considered that by complying with the above, appropriate levels of protection are afforded to the site and the adjacent public roads, footpaths and environment.


SEDIMENT CONTROL FENCE

NTS

STORMWATER PIT
SEDIMENT TRAP

NTS

GEOTEXTILE FILTER FABRIC DROP INLET
SEDIMENT TRAP

NTS

Atlantis Sediment Control Filter Bales

What are FilterBales?

Water Clean FilterBales are a unique new patented 7 stage sediment filter device developed to substantially reduce the migration of sediment and contaminants into drainage systems while allowing filtered water to easily pass through. FilterBales reduce customers' time and money by providing solutions to comply with environmental and regulatory requirements.

Durable, Dependable, Reusable.
Replacing hay bales and other inadequate attempts to stop sediment run-off, FilterBales are durable and reusable, effectively stopping your money from "pouring down the drain". They are also lightweight and easy to handle. Replaceable Water Clean Filter Cartridges guarantee peak performance is maintained.

Ask your local FilterBales stockist about replacement frequencies in your area. Cartridges and filter covers should be changed when the infiltration rate decreases. Water Clean FilterBales are suitable for a wide range of sediment and water management situations and can be easily secured in place for long term use. The unique multi-directional filter system allows you to position Water Clean FilterBales in any direction without reducing performance.

Water Clean FilterBales can be fixed to concrete or bitumen surfaces using an epoxy mortar-binder or fixed to earth surfaces using 6-10 mm pegs or stakes. When positioning, the side with the red reflective marker should be facing traffic.

www.atlantiscorp.com.au

1. **FilterBales frames** are a perforated plastic structure made from recycled wheelie bins, battery cases, milk bottles etc.
2. **Filter medium** (bio engineered soil media) used in the filter cartridges is made from a special blend of recycled organic (RO) materials from kerbside and vegetation drop off centres. The RO hosts enhanced naturally occurring micro-organisms. The blend also contains natural minerals to capture nutrients. The filter medium is as safe as normal soil.
3. **FilterBales** have a seven (7) stage filtration system
 1. In through the filter bag
 2. Through the perforated plastic structure wall
 3. In through the filter cartridge bag
 4. Through the bio engineered filter medium
 5. Out through the filter cartridge bag
 6. Out through the perforated plastic structure wall
 7. Out through the filter bag
4. **The filter bag** is made from 300-micron (one third of a millimetre) pore size geotextile. This is the first stage that filters much of the sediment and other suspended solids from the run-off water. The geotextile is designed to stop sediment and reduce clogging but allow water to pass through easily. The filter cartridge bags are made from a similar geotextile.
5. **FilterBales** work effectively up to "a one-in-one-year 48 hours, 100 mm "storm events". This is the largest storm event experienced since the commercialisation of FilterBales. Having handled this easily, Filter Bales are considered capable of handling much greater "storm events". During these storm events FilterBales were used inside gully pits in one application and on the ground surrounding the gully pit in another application.
6. **EcoSocks** are made from a similar geotextile to the filter cartridge bags and contain the same bio engineered soil media as the FilterBales. They appear able to stand up to as much wear and tear as a sandbag.
7. **FilterBales** are much lighter (at around 15 kgs dry weight) than hay bales. This reduces exposure to Occupational Health and Safety problems

Product Range

Item No.	Description	
HFB001	High FilterBale , suitable for high flow situations and higher retention time applications. Contains two standard size WaterClean Filter Cartridges in upright formation to treat contaminated waters. (605mm x 485mm x 460mm)	
LFB002	Low FilterBale , suitable for low flow situations and kerb & gutter applications. Multi-directional module containing two standard size WaterClean Filter Cartridges. (605mm x 485mm x 220mm)	
ESF004	Directional EcoSock , can be used in conjunction with FilterBales to direct water. Will also provide some sediment filtration from seepage through bio-remediating media contained within the EcoSock (1135mm x 160mm x 30mm)	

Accessories

Item No.	Description	
FCR004	WaterClean Filter Cartridges contain a unique blend of fixaling and bio-remediating products that treat common pollutants. To achieve maximum performance, each FilterBale uses two WaterClean Filter Cartridges. (440mm x 400mm x 100mm)	
HBC005 (High bale)	Replaceable FilterBale covers , made from specially designed geotextile. FilterBale covers have a standard aperture of 300 microns.	
HBC006 (Low bale)	Replaceable FilterBale covers , made from specially designed geotextile. FilterBale covers have a standard aperture of 300 microns.	

Atlantis Water Management FilterBale Pty Ltd trading as Atlantis Water Management

Suite 402/781 Pacific Highway Chatswood NSW, 2067 Australia

Phone • + 61 2 9419 6000 Fax • + 61 2 9419 6710

Email • info@atlantiscorp.com.au Web Site • www.atlantiscorp.com.au

V3-20/08/01

SCHEDULE 1

SURVEY OF EXISTING DEVELOPMENT SITE

BB	Bottom of Bank	GM	G
BFL	Balcony Floor Level	INV	Ir
BRK	Bottom of Rock	LW	Lo
BRW	Bottom Retaining Wall	ML	M
CONC	Concrete	PAR	P
EC	Edge of Concrete	PC	P
FL	Floor Level	RL	R
FP	Flag pole	TB	T
G	Grate	TF	T
GFL	Garage Floor Level	TG	T

1000

HARRISON FRIEDMANN & ASSOCIATES PTY LTD

INCORPORATING THE PRACTICE OF MICHAEL J. STYNES

ABN 69 001 953 331

**SURVEYORS, ENGINEERS, PLANNERS,
BUILDING & ENVIRONMENTAL CONSULTANTS**

WATER SERVICING CO-ORDINATOR FOR SYDNEY WATER

P.O. BOX 4025, KOGARAH BAY, N.S.W. 2217 365 PRINCES HIGHWAY, CARLTON, N.S.W. 2218

PLAN SHOWING SITE DETAILS AND LEVELS
FOR BUILDING DESIGN PURPOSES
AT 2F THE CRESCENT KINGSGROVE
LOT 2 IN DP 1237586

FOR W & J LEE PROPERTY INVESTMENTS PTY LTD

REDUCTION RATIO 1:200 @ A1	SURVEYED / DRAWN DT/JC
DATUM A.H.D.	CHECKED
DATE 27/09/2019	REFERENCE 52378D 65492 DT SHEET 1 OF 1
CAD FILE NAME: 65492DT.DWG	

SCHEDULE 2

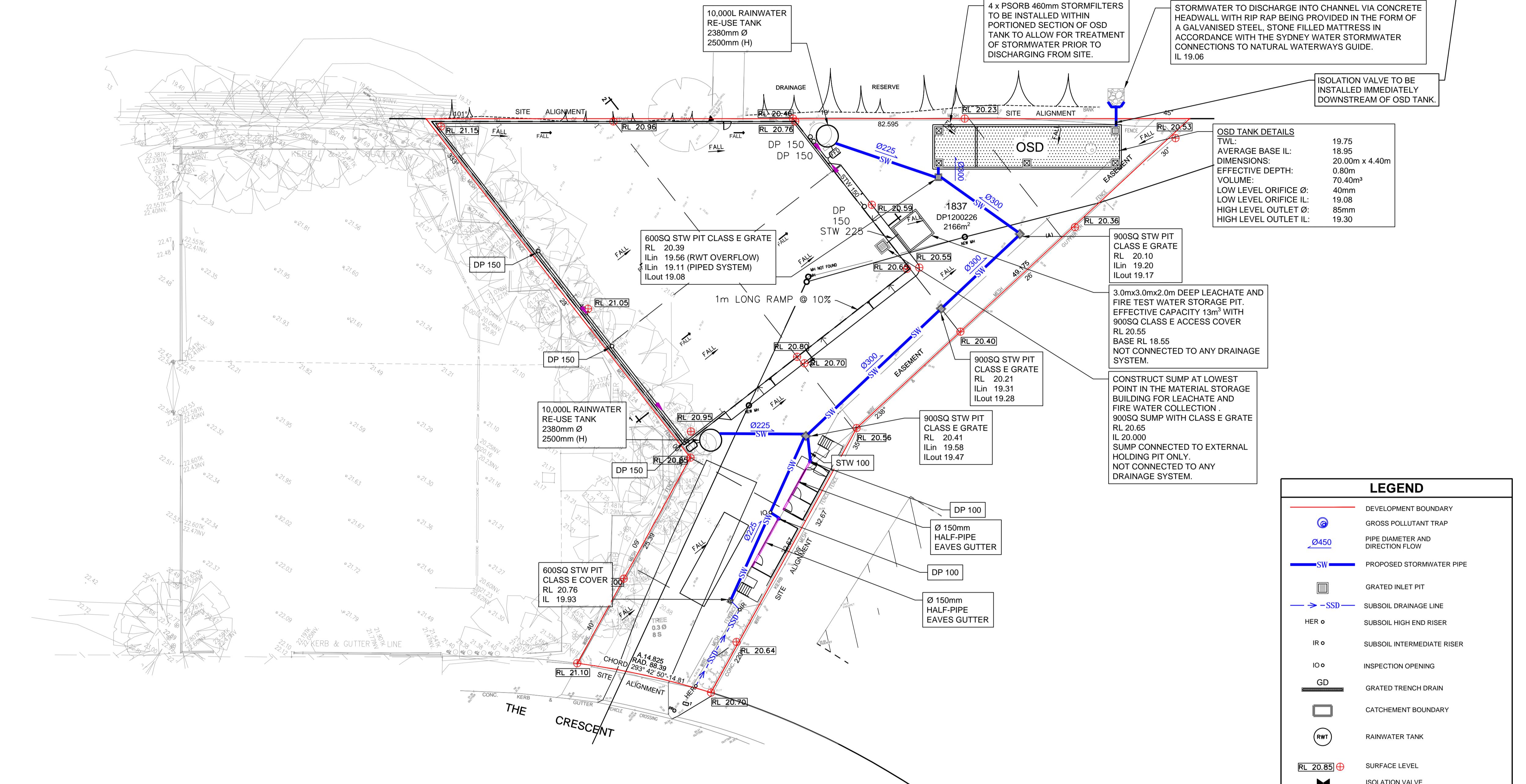
GUTTER SIZING CALCULATIONS

**ROOF STORMWATER DRAINAGE
EAVES GUTTER AND DOWN PIPE SIZING**

Project Name: Combined Skips, Kingsgrove

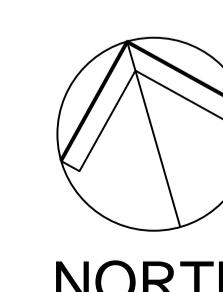
Project No.: 4986000

Engineer: Ivan Lim


Date: 14/04/2015

Revision: B

DP No	AREA	AREA m ²	INTENSITY	RUNOFF "C"	DISCHARGE (L/s)	GUTTER SIZE(mm)	DOWN PIPE SIZE
		135	201	1	7.5	200mm Half Pipe	125
		135	201	1	7.5	200mm Half Pipe	125
		135	201	1	7.5	200mm Half Pipe	125


ROOF STORMWATER DRAINAGE BOX GUTTER AND DOWNPipe SIZING															
Project Name:		Combined Skips, Kingsgrove			Project No.:		4986000								
Engineer:		IL			Date:		13.04.2015								
					Revision:		A								
DP No	AREA	INTENSITY 100I_5 mm/hr	RUNOFF	DISCHARGE	DISCHARGE	Note 1 ADOPTED GUTTER WIDTH mm	Note 2 D_G	FLOW DEPTH $D_G - 25$ mm	LENGTH (MAX) mm	SLOPE %	DEPTH HIGH POINT mm	DEPTH LOW POINT mm	Note 3 ADOPTED DEPTHS HIGH POINT mm		DOWN PIPE mm
	188	260	1	13.6	814.7	300	146	121	18154	1.0	182	364	300	500	150
	204	260	1	14.7	884.0	300	153	128	13100	1.0	192	323	300	450	150
	204	260	1	14.7	884.0	300	153	128	13100	1.0	192	323	300	450	150

SCHEDULE 3 WS&P DESIGN DRAWINGS

NOTES:-

1. ALL STORMWATER GRADED INLET PITS WITHIN THE DEVELOPMENT SITE TO BE FITTED ENVIROPOD FILTER BASKETS.
2. 4 x PSORB 460mm STORMFILTERS TO BE INSTALLED WITHIN THE PORTIONED SECTION OF THE OSD TANK.

NORTH

PLAN
SCALE 1:200
A1 SHEET

A1

ISSUE	AMENDMENT	DATE	ISSUE	AMENDMENT	DATE
A	PRELIMINARY ISSUE	01.04.15			
B	RE-ISSUE FOR REVIEW	14.04.15			
C	RE-ISSUE FOR DA	02.05.16			
D	FIRE WATER PIT ADDED	17.05.18			
E	OSD TANK ADDED	21.05.18			
F	SUBSOIL DRAINAGE ADDED	23.05.19			
G	ADDITION OF ISOLATION VALVE	05.06.19			
H	ADDITION OF OUTLET DETAILS	12.09.19			
J	RE-ISSUE FOR DA	12.12.19			

PROPOSED RESOURCE
MANAGEMENT FACILITY
2D THE CRESCENT,
KINGSGROVE

Warren Smith & Partners Pty Ltd
1st Floor, 123 Clarence Street, Sydney 2000 NSW Australia
T 02 9299 1312 F 02 9290 1295 wsp@warrensmith.com.au
www.warrensmith.com.au ABN 36 300 430 126

CONSULTING ENGINEERS

- Hydraulic Services
- Fire Protection
- Civil Engineering
- Sydney Water Accredited Water Servicing Co-ordinator
- Design Project Management - Building Plan Approvals

SERVING THE CONSTRUCTION INDUSTRY SINCE 1981.

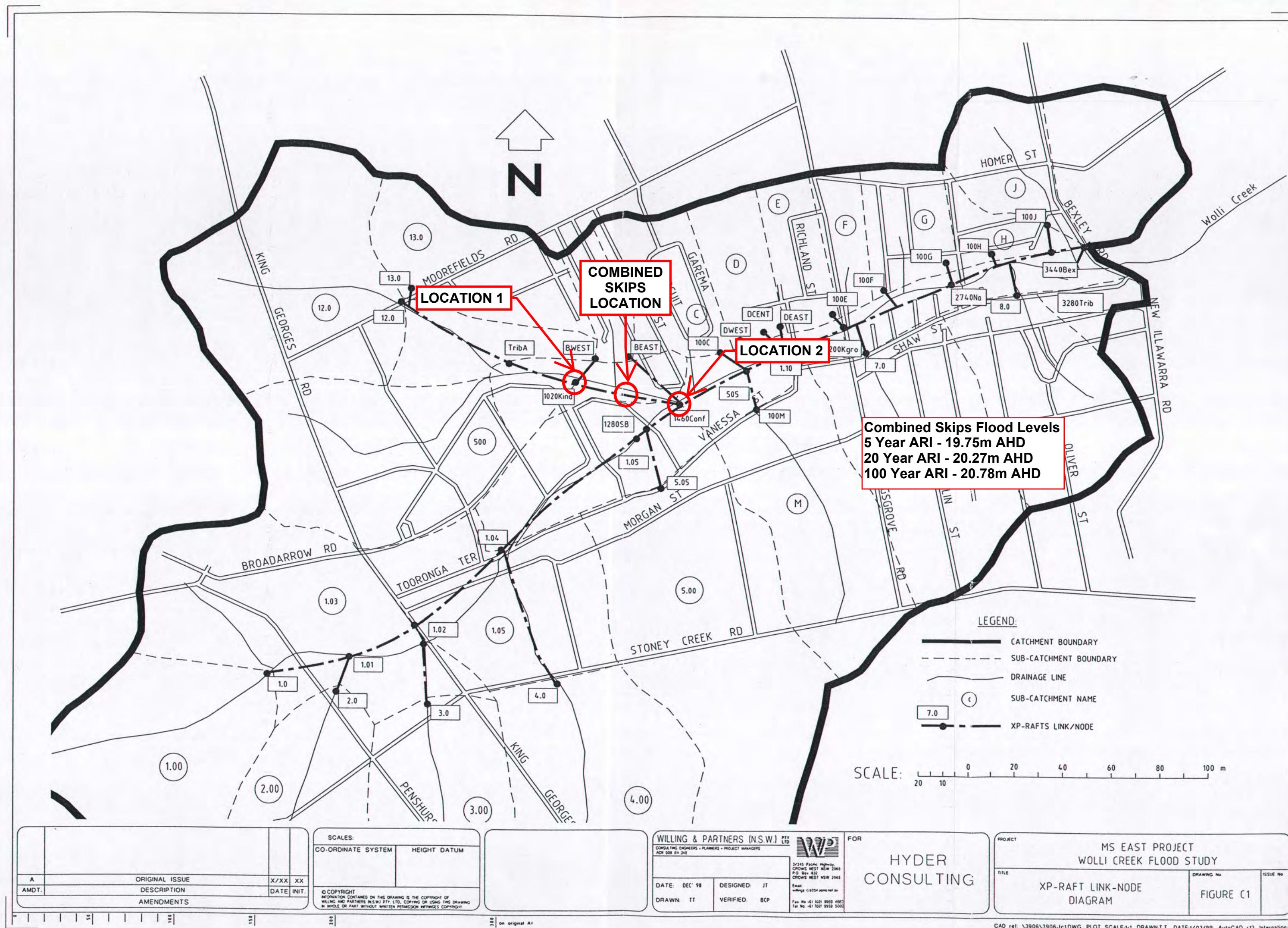

STORMWATER DRAINAGE PLAN				
SCALE AS SHOWN	DRAWN J.M.	DESIGNED L.S.	CHECKED M.C.	APPROVED M.C.
APRIL 2015	DRAWING No. C-20	ISSUE J		
JOB No. 4986000				PRELIMINARY ISSUE

TABLE 12 COMPARISON OF PRE AND POST M5 MOTORWAY FLOOD LEVELS

Node Name	Location	5 Yr ARI Flood			20 Yr ARI Flood			100 Yr ARI Flood			Probable Maximum Flood			
		Existing Invert Elevation (m AHD)	Existing Peak Elevation (m AHD)	Post M5 Peak Elevation (m AHD)	Peak Elevation Difference (m)	Existing Invert Elevation (m AHD)	Existing Peak Elevation (m AHD)	Post M5 Peak Elevation (m AHD)	Peak Elevation Difference (m)	Existing Invert Elevation (m AHD)	Existing Peak Elevation (m AHD)	Post M5 Peak Elevation (m AHD)	Peak Elevation Difference (m)	
500		24.12	25.79	25.59	-0.20	25.89	25.73	-0.17	25.97	25.85	-0.12	26.23	26.20	-0.02
540		23.74	25.29	24.44	-0.86	25.35	24.64	-0.71	25.40	24.94	-0.46	25.69	26.00	0.31
580Kooomba	Kooomba Rd	23.23	25.08	24.11	-0.97	25.20	24.36	-0.85	25.38	24.65	-0.73	25.67	25.97	0.30
620		23.04	24.65	23.82	-0.83	25.11	24.14	-0.97	25.30	24.40	-0.90	25.52	25.96	0.44
660		22.14	24.05	*	*	24.19	*	*	24.28	*	*	24.82	25.94	1.12
700		22.24	24.00	*	*	24.15	*	*	24.24	*	*	24.77	25.91	1.14
720		22.01	23.99	*	*	24.13	*	*	24.23	*	*	24.75	25.85	1.10
740		21.84	23.98	*	*	24.13	*	*	24.22	*	*	24.74	25.82	1.08
760		21.68	23.98	*	*	24.12	*	*	24.22	*	*	24.73	25.80	1.07
780	Opposite Tallawalla St	21.72	23.95	*	*	24.09	*	*	24.18	*	*	24.67	25.56	0.89
800		21.75	23.93	*	*	24.06	*	*	24.15	*	*	24.62	25.31	0.70
820		21.86	23.77	*	*	23.90	*	*	23.99	*	*	24.45	25.14	0.68
860		21.74	23.48	*	*	23.60	*	*	23.69	*	*	24.08	24.92	0.83
900		21.26	23.03	*	*	23.16	*	*	23.29	*	*	23.84	24.61	0.78
940		21.37	22.94	*	*	23.08	*	*	23.21	*	*	23.72	24.03	0.30
980		21.19	22.85	*	*	23.00	*	*	23.12	*	*	23.60	23.89	0.28
1020Kind	Kindilan St	20.70	22.51	21.30	-1.21	22.91	21.65	-1.26	23.02	22.12	-0.90	23.42	23.29	-0.14
1060		19.74	22.00	21.04	-0.96	22.17	21.41	-0.77	22.32	21.85	-0.47	22.86	23.00	0.14
1100		19.40	21.88	20.83	-1.05	22.06	21.20	-0.85	22.15	21.61	-0.53	22.65	22.68	0.03
1140		19.41	21.85	20.61	-1.24	22.02	21.00	-1.02	22.09	21.34	-0.74	22.52	22.32	-0.20
1180		20.28	21.85	20.43	-1.42	22.01	20.84	-1.17	22.06	21.18	-0.89	22.46	22.04	-0.41
1220		19.332	20.74	20.24	-0.50	21.02	20.68	-0.34	21.21	21.00	-0.21	21.69	21.67	-0.02
1260		19.05	20.43	20.00	-0.44	20.95	20.45	-0.50	21.14	20.79	-0.36	21.60	21.47	-0.12
1300		18.262	20.32			20.55			20.71			21.54		
1320Trib		18.38	20.31	19.66	-0.65	20.54	20.15	-0.39	20.70	20.50	-0.20	21.53	21.35	-0.18
1360		18.21	20.23			20.48			20.66			21.51		
1400		18.01	20.20	19.14	-1.06	20.46	19.57	-0.90	20.64	19.73	-0.91	21.50	21.28	-0.22
1440	Confluence of nth & sth branches	17.81	20.19			20.46			20.64			21.49		
1460conf	Opp Garema Cct	17.654	20.19	18.28	-1.91	20.46	18.96	-1.50	20.64	19.51	-1.13	21.49	21.27	-0.22
1500		18.06	20.12	18.01	-2.12	20.37	18.69	-1.68	20.53	19.03	-1.50	21.28	21.25	-0.04
1540		17.82	20.12			20.36			20.51			21.20		
1580		15.785	18.47	17.66	-0.81	18.73	18.43	-0.30	18.97	18.73	-0.24	20.27	20.81	0.54
1600		15.63	18.22	17.59	-0.63	18.53	18.32	-0.21	18.79	18.65	-0.15	20.23	20.80	0.57
1640Trib		15.399	18.21			18.53			18.80			20.24		
1680		15.13	17.96	17.45	-0.51	18.28	18.06	-0.22	18.55	18.43	-0.12	20.14	20.75	0.61
1720		14.926	17.75			18.06			18.34			20.07		
1740		14.82	17.68	17.49	-0.19	17.99	17.96	-0.03	18.27	18.31	0.04	20.05	20.72	0.67
1760		14.726	17.60			17.92			18.20			20.03		
1780		14.63	17.52			17.84			18.13			20.01		
1820		14.383	17.40			17.72			18.01			19.98		
1860		14.21	17.25	16.88	-0.37	17.58	17.54	-0.04	17.90	17.95	0.05	19.95	20.64	0.69
1900		14.057	17.06			17.45			17.79			19.92		
1940		13.90	16.90	16.06	-0.85	17.34	17.22	-0.11	17.69	17.69	0.00	19.84	20.58	0.74
1980		13.748	16.74			17.23			17.60			19.79		
2020Kar	Karingal St	13.59	16.56	15.76	-0.80	17.10	16.80	-0.30	17.49	17.42	-0.07	19.74	20.47	0.73
2060		13.335	16.41			16.93			17.36			19.70		
2100		13.14	16.15	15.48	-0.67	16.77	16.40	-0.37	17.25	17.03	-0.22	19.67	20.24	0.57
2140		12.992	16.00			16.72			17.21			19.65		
2160		12.85	15.92	15.47	-0.45	16.69	16.41	-0.28	17.19	17.03	-0.16	19.64	20.12	0.48
2180		12.77	15.82			16.65			17.16			19.63		
2200Kgro	U/s Kingsgrove Rd	12.45	15.94	15.43	-0.51	16.67	16.37	-0.30	17.17	16.99	-0.18	19.63	20.08	0.45
2220Kgro	D/s Kingsgrove Rd	11.9	14.92	15.21	0.29	15.21	15.70	0.49	15.87	16.15	0.28	17.78	17.85	0.07
2240		11.78	14.91	15.27	0.36	15.46	15.76	0.30	15.77	16.20	0.43	17.71	17.90	0.19
2280		11.56	14.50			15.26			15.58			17.63		
2320York	York St	11.314	14.27	13.25	-1.02	15.06	13.70	-1.36	15.35	14.33	-1.02	17.22	17.13	-0.10
2360		11.05	14.21											

COMBINED SKIPS FLOOD LEVEL INTERPOLATION**5 YEAR ARI**

Combined Skips Chainage (x)	22
Location 2 Chainage (x2)	43
Location 1 Chainage (x1)	0
Location 2 Post M5 Flood Level (y2)	18.28
Location 1 Post M5 Flood Level (y1)	21.3
Combined Skips Post M5 Flood Level (y)	19.75488

20 YEAR ARI

Combined Skips Chainage (x)	22
Location 2 Chainage (x2)	43
Location 1 Chainage (x1)	0
Location 2 Post M5 Flood Level (y2)	18.96
Location 1 Post M5 Flood Level (y1)	21.65
Combined Skips Post M5 Flood Level (y)	20.27372

100 YEAR ARI

Combined Skips Chainage (x)	22
Location 2 Chainage (x2)	43
Location 1 Chainage (x1)	0
Location 2 Post M5 Flood Level (y2)	19.51
Location 1 Post M5 Flood Level (y1)	22.12
Combined Skips Post M5 Flood Level (y)	20.78465

NOTE:

1. Location 1 = Node 1020Kind, Location 2 = Node 1460Conf
2. $y = y_1 + (y_2 - y_1) * ((x - x_1) / (x_2 - x_1))$

STORMWATER DRAINAGE
PIPE SIZING SCHEDULE

Project Name: Combined Skips, KingsgroveProject No.: 4986000Engineer: Ivan LimDate: 1/04/2015Revision: A

Note 1 : Rainfall intensity from Bureau of Meteorology

LINE	AREA	CATCHMENT AREA m ²	TOTAL AREA m ²	RUNOFF COEFF.	RAINFALL INTENSITY (Note 1) mm/hr	DISCHARGE L/s	Branch (eg : ST1)	SUB. TOTAL			CAPACITY L/s	CUM. TOTAL L/s
								SUB TOTAL DISCHARGE L/s	MIN. PIPE GRADE %	PIPE SIZE mm		
	1	111.65	111.7	1	94.5	2.9		2.9	1	225	0.015	79
	2	311	422.8	1	94.5	8.2		11.1	1	225	0.015	79
	3	215	637.6	1	94.5	5.6		16.7	1	225	0.015	79
	4	101	738.8	1	94.5	2.7		19.4	1	225	0.015	79
	5	302	1040.8	1	94.5	7.9		27.3	1	225	0.015	79
	6	99	1139.4	1	94.5	2.6		29.9	1	225	0.015	79
	Total		1139.4									29.9

Warren Smith & Partners

WARREN SMITH & PARTNERS PTY LIMITED
CONSULTING ENGINEERS
ACN 002 197 088
1st floor, 123 Clarence Street
SYDNEY NSW 2000

EMAIL: wsp@warrensmith.com.au

TELEPHONE: 61 2 9299 1312
FACSIMILE: 61 2 9290 1295